Sep 13. Lecture 6 Proof: Let u be a measure that is translation invariant and finite on compact sets Assume $\mu(10,13) = c \in [0,\infty)$. By finite additivity and translation invariance $\forall n \ge 1$ $\forall m = 1, 2, \dots, n$ $\mathcal{U}\left(\frac{m-1}{n}, \frac{m}{n}\right) = \frac{1}{n}c$ and $\mathcal{U}\left(0, \frac{m}{n}\right) = \frac{m}{n}c$ ⇒ ¥ p.q ∈ D p<q. u((p,q]) = (q-p)c By continuity of u, we obtain that Vinterval I SIR, M(I) = ((I).c, and VXEIR M(SX)) = 0 In particular, for each n >1. $\forall a, b \in \mathbb{R}$, a < b. $\mathcal{U}((a,b) \cap [-n,n]) = c \cdot m((a,b) \cap [-n,n])$ where c.m. is the measure on (IR, oBIR) given by c.m. (A) = C.(m(A)). By the theorem above, $\mu = c \cdot m$ on $\partial [-n,n]$. Proceed similarly as in the previous proof, we conclude that $\mu = c \cdot m$ on sb_{iR} . {cx: x∈A} Proposition: m has the scaling property that VAEM VCER CAEM and m(cA) = |C| m(A) In particular, m has the reflection symmetry that $\forall A \in \mathcal{M}$. $-A \in \mathcal{M}$ and m(-A) = m(A)

1st proof: Prove the statement directly by the definition of m (and m*) Key points: Given A ≤ IR. {In: n≥1} is an open-interval covering of A if and only if {cIn: nzi} is an open-interval covering of CA, and $l(cI_n) = |c| \cdot l(I_n)$ $\Rightarrow m^*(cA) = |c| \cdot m^*(A)$ Next, assume A∈ M. Argue that ∀B⊆IR m*(B) = m*(Bn(cA)) + m*(Bn(cA)) ⇒ cA∈M Treat the cases "c=0" and "c+o" separately. 2nd proof: Prove the Statement via m restricted on BIR (but a necessary element will be introduced in the next section) Fix CER [30] ("c=0" case is trivial). Consider a set function Mc on orm s.t. & B ∈ & IR. Mc (B) = m (CB). Mc is a measure on (IR, & IR) It's clear that \ a, b \in IR. a < b. \ \max n \ \ | Mc ((a,b) n [-n,n]) = | c| ((a,b) n [-n,n]) = | c| m ((a,b) n [-n,n]) > uc = | c1 m on & [-n, n] > uc = | c1 m on & | B = & B = & | m(cB) = | c1 m(B) However, we still need to show $M_c = |c| \cdot m$ on M. We need to better understand the relation between BR and M

315. Relation between Bir and M

We have proven that "m is complete" i.e. $\forall A \in M$ with m(A) = 0 $B \in A \Rightarrow B \in M$ and m(B) = 0

Now we introduce the notion of "completion" in the general setting.

Definition: Given a measure space (X, \mathcal{F}, u) , consider the collection of subsets of X $X := \{B \subseteq X : \exists A \in \mathcal{F} \text{ with } u(A) = 0 \text{ s.t. } B \subseteq A\}$ (all subsets of null sets)

Then, $\overline{f} := \sigma(f \cup N) = \sigma(f \otimes X : B \in \overline{f} \text{ or } B \in N)$ is called the

completion of I with respect to M.

Proposition $\overline{T} = \overline{F} \in X$: $\exists E, G \in \overline{T}$. $s.t. E \subseteq F \subseteq G$ and $u(G \setminus E) = 0$

Proof: Denote by G the collection on the RHS above. First, verify that G is a σ -algebra of subsets of X. Next, since $F \subseteq G$ and $N \subseteq G$.

F=o(JUN) EG Meanwhile, for any F EG, JE, G E J st.

E ∈ F ∈ G and u(G/E) = 0. ⇒ F = EU (F/E) where F/E ∈ N ⇒ F ∈ \$ Therefore $g \subseteq f$ We conclude that g = f

Definition Given measure space (X, F, M), M can be extended the F as VFE寸. 片EsFsG for some E,Ge芋 with u(G)E)=0, then u(F):= u(E)=u(G)

(Verify that μ is well-defined on F, i.e. if $\exists E', G' \in F$ st. $E' \in F \in G'$ with $\mu(G' \setminus E') = 0$, then it must be that $\mu(E) = \mu(E') = \mu(G') = \mu(G')$.) $\mu: \overrightarrow{F} \rightarrow [0,00]$ is again a measure. $(X, \overrightarrow{F}, \mu)$ is the completion of $(X, \overrightarrow{F}, \mu)$

(X, F, ,u) is a complete measure space in the sense that $\forall A \subseteq X$. if 3 B & F with MB) = 0 St. A & B. then A & F and M(A) = 0.

Theorem (IR, M, m) is the completion of (IR, B_{IR} , m). That is, $\forall A \in M$, $\exists B_{IR} \subset c \in B_{IR}$ s.t. $B \subseteq A \subseteq C$ and $m(C \setminus B) = 0$. (Every Lebesgue measurable set differs from a Borel set $C \cap B_{IR} \cap B_{IR}$ by at most a null set)

Proof: By the results (1) (2) from the regularity theorem of m. by at most a null sett that, I open set Gn and closed set Fn. St. Fn \(A \) \(Gn \) and m(\(Gn \) \(A \) \(\) \(h \) m(\(A \) \(Fn \) \(\) \(Fn \) \(A \) \(Gn \) and m(\(Gn \) \(A \) \(\) \(h \) \(m(A \) \(Fn \) \(Sn \) \(M \)

Set C = OGn. B = D. Fn Clearly, B, C & BIR and B = A & C Moreover, $m(A \setminus B) \leq m(A \setminus F_n) \leq \frac{1}{n}$ and $m(C \setminus A) \leq m(G_n \setminus A) \leq \frac{1}{n}$ $\forall n \geq 1$ \Rightarrow m(C\B) = m(A\B) + m(C\A) $\leq \frac{2}{n}$ $\forall n \geq 1$ \Rightarrow m(C\B) = 0 \square Now going back to the 2rd proof of the proposition on the rescaling property of m ... We already know that . YCEIR, YBEODIR, m(CB) = |C| m(B). Then, it follows immediately from the theorem above that YCEIR YAEU . mccA) = 101.m(A) \$1.6. Some special sets.

We want to answer the following questions...

Q1. Is there A∈U with m(A)=0 but A is uncountable?

Yes to all.

Q2: Is there A⊆R that A≠U? (If so, are they rare or abundant?)?

Q3: Is there A = M but A & oBix?

?

Q1: There exists $A \in \mathcal{M}$ with m(A) = 0 and A is uncountable

A classical example is the Contor set $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ removing mid $\frac{1}{3}$ \(\begin{array}{c} 2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, \frac{1}{9}] \] from each segment ... repeat this process.

V n 21. Cn is the union of 2" disjoint closed intervals each of which has length 3" and Cn & The Coutor set is $C := \bigcap_{n=0}^{\infty} C_n$. Then, (1) C is closed and hence $C \in \mathcal{Q}_{iR}$

(2)
$$\forall n \geqslant 1$$
, $m(C_n) = 2^n \cdot \frac{1}{3^n} \implies m(C) = \lim_{n \to \infty} m(C_n) = 0$.

(a) C is uncountable (in fact, C has the same cardinality as [a1])

To see (3). consider the base-3 expansion of numbers in [0,1]: $\forall x \in [0,1] = \{a_n:n \ge 1\} \in \{0,1,2\}^{N}$ S.t. $\chi = \sum_{n=1}^{\infty} a_n \cdot \frac{1}{3^n}$ O 3 3 4 1 Some values have two expansions, e.g. $\frac{1}{3} = \{0,0,0,\cdots\}$ $\chi \to \{0,2,0,\cdots\}$

Then, C =] x ∈ [2, 1]: x admits a base-3 expansion (a, as, ...an, ...) where an ∈ {5, 2} ∀n ≥1}

Note that the set on the RHS does contain values such as $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{9}$, $\frac{2}{9}$, ...

Define $f: C \rightarrow [3,1]: \forall x \in C$ assume the base-3 expansion of x is (a_1,a_2,a_3,\cdots) . $a_n \in \{a_2\} \forall n \ge 1$ $f(x) = \sum_{n=1}^{be} \frac{a_n}{2} \frac{1}{2^n} \quad \text{(that is replace the 2s by 1s, and turn base-3 to base-2)}$ Observe that fis a surjection. & y & [0,1], = (b1, b2,...) s.t. bn & [0,1] \ \forall n > 1 s.t. $y = \sum_{n=1}^{\infty} b_n \frac{1}{2^n}$ (binary expansion of y)

$$y = f(x) \quad \text{for } x \in C \text{ with base -3 expansion } (2b_1, 2b_2, 2b_3)$$

$$i.e. \quad x = \sum_{n=1}^{b} (2b_n) \cdot \frac{1}{3^n}$$

$$\Rightarrow y = f(x) \quad \text{for } x \in C \text{ with base -3 expansion } (2b_1, 2b_2)$$

$$ie. \quad x = \sum_{n=1}^{\infty} (2b_n) \cdot \frac{1}{3^n}$$

i.e.
$$\chi = \sum_{n=1}^{\infty} (2b_n) \cdot \frac{1}{3^n}$$

 \Rightarrow C has cardinality no Smaller than [0,1], so C is uncountable.

⇒ C has cardinality no Smaller than [0.1], so C is uncountable.

Remark: One can similarly construct Contor-like set under different bases.

(Since C⊆[0,1], C has the same cardinality as [0,1])