Lecture 4

(8) If $A = \bigcup_{k=1}^{\infty} J_k$ where J_k 's are almost disjoint intervals (at most sharing end points) Sep. 6 then $m^*(A) = \sum_{k=1}^{\infty} \lambda(J_k)$ Proof: W.L.O.G. assume l(Jk) < b0 \ k≥1. Fix an arbitrary \ ≥0. for each k≥1, choose open interval Ik CJk s.t. l(Jk) ≤ l(Ik) + €/2k For each integer N>1. II, ..., IN are disjoint with a positive distance from one another. By (7) (induction to N times), $m^*\left(\bigcup_{k=1}^{N}J_k\right) = \sum_{k=1}^{N}l(J_k) \geq \sum_{k=1}^{N}l(J_k) - \sum_{k=1}^{N}\frac{\varepsilon}{2^k} \geq \sum_{k=1}^{N}l(J_k) - \varepsilon$ Since $\bigcup_{k=1}^{\infty} J_k \in A$ $m^*(A) \geqslant \sum_{k=1}^{\infty} l(J_k) - \varepsilon \Longrightarrow m^*(A) \geqslant \sum_{k=1}^{\infty} l(J_k) - \varepsilon$ On the other hand, $m^*(A) \leq \sum_{k=1}^{TD} l(J_k)$ by (countable subadditivity) \square . Despite of all the properties above, m* doesn't support "m*(AUB) = m*(A) + m*(B)" for orbitrary disjoint sets A, B. Consider restricting m* to the "good" sets.

Step 2: Define measurable sets Definition A set $A \subseteq \mathbb{R}$ is m^* -measurable if $A \subseteq \mathbb{R}$ $m^*(B) = m^*(B \cap A) + m^*(B \cap A^c)$ Otherwise, A is a non-measurable set. Remark: By Subaddifivity, we know that YA, B. SIR $m^*(B) \le m^*(B \cap A) + m^*(B \cap A^c)$ So, m^* -measurability of A is about whether or not "<" could occur Theorem (Carathéodary's Theorem) Let $M := {} A \subseteq \mathbb{R}$: A is m^* -measurable ${}$ Then, M is a o-algebra (of subsets of IR). Define m: M > [3 10]

by $\forall A \in \mathcal{U}$ $m(A) = m^*(A)$. Then, m is a measure on (IR, \mathcal{U}) m is called the Lebesgue measure, and A∈ U is a (Lebesgue) measurable set. Proof. It follows immediately from the definition of m*- measurability

that IR & M, and if A & M. then A & M. Next, we will show M is closed under finite union, i.e. if A, ·· , AN ∈ M. then I An & M. It's sufficient to treat the case N=2. Given $A_1, A_2 \in \mathcal{M}$. $\forall B \subseteq \mathbb{R}$ $m^*(B) = m^*(B \cap A_1) + m^*(B \cap A_1^c)$ $= m^*(B \cap A_1) + m^*(B \cap A_1^c \cap A_2) + m^*(B \cap A_1^c \cap A_2^c)$ Subadditivity union = $B \cap (A_1 \cup A_2)$ $B \cap$ Subadditivity implies the reverse ineq So, we have proven that YB ≤ IR m*(B) = m* (Bn(A, UA2)) + m*(Bn(A, UA2)) > A, UA € M Now, consider a sequence sAn: n>1) \(\int \mathbb{M} \). We want to show that \(\int_{n=1}^{\infty} An \in \mathbb{M} \). W.L.O.G., we may assume An's are disjoint. (Otherwise, we replace {An: n≥1} by Bn: n≥1] where B = A, Bn = An \ i=1 Ai for n≥2. Then, Bn: n≥1] ⊆ M (since we have shown M is closed under finite union and complement). Bu's are disjoint.

and I Bn = I An So, it's equivalent to show I Bn & M.)

For every $n \ge 1$, set $E_n := \bigcup_{i=1}^n A_i$. We already know that $E_n \in \mathcal{M}$ $\forall n \ge 1$.

 $\forall B \subseteq \mathbb{R}$ $m^*(B) = m^*(B \cap E_n) + m^*(B \cap E_n)$ $\geq m^*(B \cap E_n) + m^*(B \cap (\bigcup_{i=1}^{\infty} A_i)^i)$ because $E_n \subseteq \bigcup_{i=1}^{\infty} A_i$

= m* (BnEn nAn) + m* (BnEn nAn) + m* (Bn (D) Ai))

= m*(BnAn) + m*(BnEn) + m*(Bn(1)) n Am n Ac

 $= m^*(B \cap A_n) + m^*(B \cap A_{n_1}) + m^*(B \cap E_{n-2}) + m^*(B \cap (\bigcup_{i=1}^{n} A_i)^c)$

 $=\sum_{i=1}^{n} m^*(B \cap A_i) + m^*(B \cap (\bigcup_{i=1}^{n} A_i)^c)$ Since n is arbitrary $m^*(B) \ge \sum_{n=1}^{\infty} m^*(B_n A_n) + m^*(B_n (\bigcup_{n=1}^{\infty} A_n)^c)$

(Courtable subadd.) > m*(Bn("An)) + m*(Bn("An)")

Thus, DAn & M. We have proven that M is a o-algebra,

Now, we move onto proving $m = m^* \mid u$ is a measure. $m(\phi) = m^*(\phi) = 0$ obviously.

Assume {An: n >1} = M is a sequence of disjoint measurable sets. First, by countable subadd.

 $m\left(\bigcup_{N=1}^{\infty}A_{N}\right)=m^{*}\left(\bigcup_{N=1}^{\infty}A_{N}\right)\leq\sum_{N=1}^{\infty}m^{*}\left(A_{N}\right)=\sum_{N=1}^{\infty}m(A_{N})$ Second, by monotonicity of m^* , $\forall n \ge 1$, $m(\bigcup_{n=1}^{\infty} A_n) = m^*(\bigcup_{n=1}^{\infty} A_n) \ge m^*(\bigcup_{i=1}^{n} A_i) = m(\bigcup_{i=1}^{n} A_i)$

Since A, ..., An ∈ M are disjoint, we can follow a similar argument as above to prove

 $m^*(\stackrel{\circ}{\downarrow_{i=1}}A_i)=\stackrel{\circ}{\downarrow_{i=1}}m^*(A_i)$ or equivalently $m(\stackrel{\circ}{\downarrow_{i=1}}A_i)=\stackrel{\circ}{\downarrow_{i=1}}m(A_i)$

Therefore. $\forall n \geq 1$. $m(\stackrel{\circ}{\downarrow} A_i) \geq \stackrel{\circ}{\downarrow} m(A_i) \stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\downarrow} m(A_i)$

We have proven $m(\frac{10}{i=1}A_i) = \sum_{i=1}^{\infty} m(A_i)$ (countable add.) $\Rightarrow m$ is a measure.

Proposition M and m are translation invariant, i.e., VAEM. XXEIR, A+XEM and m(A)=m(A+X)

Proof: Given $A \in \mathcal{M}$ and $x \in \mathbb{R}$ $\forall B \subseteq \mathbb{R}$ $m^*(B) = m^*(B-x) = m^*(B-x) \cap A) + m^*(B-x) \cap A^c$ $translation invariance of m^* = m^*(B \cap (A+x)) + m^*(B \cap (A+x)^c)$ Therefore, $A + x \in \mathcal{M}$. Moreover, $m(A) = m^*(A) = m^*(A+x) + m(A+x)$

Theorem. $\forall a, b \in \mathbb{R}$ $a < b$. $(a, b) \in \mathcal{M}$ and $m((a,b)) = b-a$.
Important corollary: BIR S. M. i.e. all Borel sets are Lebesgue measurable